Characterizations of Realizable Space Complexities

نویسندگان

  • Joel I. Seiferas
  • Albert R. Meyer
چکیده

This is a complete exposition of a tight version of a fundamental theorem of computational complexity due to Levin: The inherent space complexity of any partial function is very accurately speciiable in a 1 way, and every such speciication that is even 2 does characterize the complexity of some partial function, even one that assumes only the values 0 and 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special Bertrand Curves in semi-Euclidean space E4^2 and their Characterizations

In [14] Matsuda and Yorozu.explained that there is no special Bertrand curves in Eⁿ and they new kind of Bertrand curves called (1,3)-type Bertrand curves Euclidean space. In this paper , by using the similar methods given by Matsuda and Yorozu [14], we obtain that bitorsion of the quaternionic curve is not equal to zero in semi-Euclidean space E4^2. Obtain (N,B2) type quaternionic Bertrand cur...

متن کامل

On the Complexity of Iterated Insertions

We investigate complexities of insertion operations on formal languages relatively to complexity classes. In this way, we introduce operations closely related to LOG(CFL) and NP. Our results relativize and give new characterizations of the ways to relativize nondeterministic space.

متن کامل

Characterizations of Slant Ruled Surfaces in the Euclidean 3-space

In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...

متن کامل

CHARACTERIZATIONS OF EXTREMELY AMENABLE FUNCTION ALGEBRAS ON A SEMIGROUP

Let S be a semigroup. In certain cases we give some characterizations of extreme amenability of S and we show that in these cases extreme left amenability and extreme right amenability of S are equivalent. Also when S is a compact topological semigroup, we characterize extremely left amenable subalgebras of C(S), where C(S) is the space of all continuous bounded real valued functions on S

متن کامل

Degree sequence for k-arc strongly connected multiple digraphs

Let D be a digraph on [Formula: see text]. Then the sequence [Formula: see text] is called the degree sequence of D. For any given sequence of pairs of integers [Formula: see text], if there exists a k-arc strongly connected digraph D such that d is the degree sequence of D, then d is realizable and D is a realization of d. In this paper, characterizations for k-arc-connected realizable sequenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 73  شماره 

صفحات  -

تاریخ انتشار 1995